
Math Analysis I Notes
Instructor A. Etkin

Completeness & Compactness

             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).



             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).

Complete_Compactness.nb  9



             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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             TOTALLY BOUNDED SETS

Definition: A set A in a metric space HM, dL is said to be totally bounded if, given any

¶ > 0, there exist finitely many points x1, ..., xn Î M  such that A Ì Ü
i=1

n

B¶HxiL  . That is,

each x Î A  is within ¶ of some xi. 

For this reason , some authors would say that the set 8x1, …, xn< is ¶-dense in A, or that

8x1, …, xn<  is an ¶-net for A.  For our purposes, we will  paraphrase the statement by

saying that A is covered by finitely many ¶-balls. In the definition of a totally bounded set

A, we could easily insist that each ¶-ball be centered at a point of A. 

Indeed,  given ¶ > 0,  choose x1, …, xn Î M  so  that  A Ì Ü
i=1

n

B¶�2HxiL.  We may certainly

assume that A Ý B¶�2HxiL ¹ Æ for each i, and so we may choose a point yi Î A Ý B¶�2HxiL
for each i. By the triangle inequality, we then have A Ì Ü

i=1

n

B¶HyiL. (Why?) 

That is, A can be covered by finitely many ¶-balls, each centered at a point in A. More to

the point, a set A is totally bounded iff A can be covered by finitely many arbitrary sets

of diameter at most ¶, for any ¶ > 0. 

• Lemma:

A  is totally bounded iff, given ¶  > 0, there are finitely many sets A1, ..., An Ì A,  with

diamHAiL < ¶  for all i, such that A Ì Ü
i=1

n

Ai. 

Proof:

(Þ)

First suppose that A is totally bounded. Given ¶ > 0, we may choose x1, ..., xn Î M such

that  A Ì Ü
i=1

n

B¶HxiL.  As  above,  A  is  then  covered  by  the  sets  Ai = A Ý B¶HxiL Ì A

and diamHAiL £ diamHB¶HxiLL £ 2 ¶  for each i. 

(Ü)

Conversely, given ¶ > 0, suppose that there are finitely many sets A1, ..., An Ì A, with

diamHAiL < ¶ for all i, such that A Ì Ü
i=1

n

Ai. Given xi Î Ai, we then have Ai Ì B2 ¶HxiL for

each i  and, hence, A Ì Ü
i=1

n

Ai Ì Ü
i=1

n

B2 ¶HxiL . Since ¶ is arbitrary in either case, we are

done.  à

Note: Notice that the condition in the above lemma demands that A1, …, An be subsets

of A. This is no real constraint since, after all, if A is covered by B1, ..., Bn Ì M, then A is

also covered by the sets Ai = A Ý Bi Ì A and diamHAiL £ diamHBiL. 

Example:

a) By the triangle inequality, a totally bounded set is necessarily bounded (why?). Note

also that any subset of a totally bounded set is again totally bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded iff it

is finite (why?).

c) In R we do not get anything new: A subset of R is totally bounded iff it is bounded.

Thus, total boundedness is apparently not a topological property; it depends intimately

on the metric at hand. 

d) In general, not every bounded set is totally bounded. The discrete metric gives us a

clue as to how we might construct such a set:

Recall the sequence e
HnL

= H0, …, 0, 1, 0, …L in {1, where the single nonzero entry is in

the n
th

 place. Then, 9eHnL
: n ³ 1= is a bounded set in {1, since ÈÈ e

HnL ÈÈ1 = 1 for all n, but

not totally bounded. Why? Because ÈÈ e
HmL

- e
HnL ÈÈ1 = 2 for m ¹ n; thus, 9eHnL

: n ³ 1= can-

not be covered by finitely many balls of radius < 2. In fact, the set 9eHnL
: n ³ 1= is discrete

in its relative metric.  Ù

We next give a sequential criterion for total boundedness. The key observation is iso-

lated in: 

• Lemma:

Let 8xn< be a sequence in HM, dL, and let A = 8xn : n ³ 1< be its range. 

(i) If 8xn< is Cauchy, then A is totally bounded. 

(ii) If A is totally bounded, then 8xn< has a Cauchy subsequence. 

Proof:

(i)  Let  ¶  >  0.  Then  ,  since  8xn<  is  Cauchy,  there  is  some  index  N ³ 1  such  that

diam 8xn : n ³ N< < ¶. Thus:

                                     

(ii)  If  A  is a finite set,  we are done. (Why?) So, suppose that A  is an infinite totally

bounded set. Then A can be covered by finitely many sets of diameter < 1. One of these

sets, at least, must contain infinitely many points of A. Call this set A1. But then A1  is

also totally bounded, and so it can be covered by finitely many sets of diameter < 1 � 2.

One of these, call it A2, contains infinitely many points of A1. Continuing this process,

we  find  a  decreasing  sequence  of  sets  A É A1 É A2 É ...,  where  each  Ak  contains

infinitely many xn  and where diamHAkL < 1 � k.  In particular, we may choose a subse-

quence 8xn<  with  xnk
Î Ak  for  all  k.  (How?)   That  8xnk

< is  Cauchy is  now clear  since

diam 9xn j
: j ³ k= £ diamHAkL < 1 � k.        à 

Example:

a) The sequence xn = H-1Ln
 in R shows that a Cauchy subsequence is the best that we

can hope for in part ii) of the above lemma. 

b) Note that the sequence 9eHnL= in {1 has no Cauchy subsequence.     Ù

We are finally ready for our sequential characterization of total boundedness: 

• Theorem:

A set A is totally bounded iff every sequence in A has a Cauchy subsequence. 

Proof:

The forward implication is clear from the above lemma. To prove the backward implica-

tion, suppose that A is not totally bounded. Then, there is some ¶ > 0 such that A can-

not be covered by finitely many ¶-balls. Thus, by induction, we can find a sequence 8xn<
in A such that dHxn, xmL ³ ¶ whenever m ¹ n. (How?) But then, 8xn< has no Cauchy subse-

quence.  à

All of this should remind you of the Bolzano–Weierstrass theorem –and for good rea-

son: 

• Corollary (The Bolzano– Weierstrass Theorem):

Every bounded infinite subset of  R has a limit point in R. 

Proof:

Let A be a bounded infinite subset of R. Then, in particular, there is a sequence 8xn< of

distinct points in A. Since A is totally bounded, there is a Cauchy subsequence 8xnk
<of

8xn<.  But  Cauchy  sequences in  R  converge,  and  so 8xnk
<converges  to  some x Î R.

Thus, x is a limit point of A. à

Before we are ready to talk about compact sets, we need a few results about complete-

ness.

                                      COMPLETE METRIC SPACES

Definition: A metric space M  is said to be complete if  every Cauchy sequence in M

converges to a point in M.

Example: 

a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we

will see, the completeness of R is actually equivalent to the least upper bound axiom. 

b) R
n
 is complete (because R is). 

c) Any discrete space is complete (trivially). 

d) H0, 1L is not complete. (Why?) Hence, completeness is not preserved by homeomor-

phisms. 

e) c0, {1, {2, {p  and {¥  are all complete. The proofs are all very similar; we sketch the

proof for {2 below. 

f) C@ a, bD is complete. The proof is not terribly difficult, but it will best serve our pur-

poses to postpone it. Ù

The proof that {2 is complete is based on a few simple principles that will generalize to

all  sorts of different settings. This generality will  become all  the more apparent if  we

introduce a slight change in our notation. Since a sequence is just another name for a

function  on  N,  let’s  agree  to  write  an  element  f Î {2  as  f = 8f HkL<
k=1
¥

,  in  which  case

ÈÈ f ÈÈ2 = Ú
k=1

¥  f HkL¤2 1�2
. For example, the notorious vectors e

HnL
 will now be written as en,

where enHkL = ∆n,k  (This is Kronecker’s delta, which is defined by ∆n,k =
1 if n = k

0 otherwise

). 

Let 8fn< be a sequence in {2, where now we write fn = 8fnHkL<
k=1
¥

, and suppose that 8fn< is
Cauchy  in  {2.  That  is,  suppose  that  for  each  ¶ > 0  there  exists  an  n0  such  that

ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Of course, we want to show that 8fn< converges, in

the metric of {2, to some f Î {2. We will break the proof into three steps: 

Step 1: f HkL = lim
n®¥

fnHkL exists in R for each k. 

To see why, note that  fnHkL - fmHkL¤ £ ÈÈ fn - fm ÈÈ2 for any k, and hence 8fnHkL<
k=1
¥

 is Cauchy

in R for each k. Thus, f  is the obvious candidate for the limit of 8fn<, but we still have to

show that the convergence takes place in the metric space {2; that is, we need to show

that f Î {2 and that ÈÈ fn - f ÈÈ2 ® 0 (as n ® ¥). 

Step 2: f Î {2that is, ÈÈ f ÈÈ2 < ¥. 

We know that  8fn<  is  bounded in  {2  (why?);  say  ÈÈ fn ÈÈ2 £ B " n.  Thus,  for  any  fixed

N < ¥, we have:

           Ú
k=1

N  f HkL¤2 = lim
n®¥

Ú
k=1

N  fnHkL¤2 £ B
2
.

Since this holds for any N, we get that ÈÈ f ÈÈ2 £ B. 

Step 3:  Now we repeat Step 2 (more or less) to show that fn ® f  in {2. 

Given ¶ > 0, choose n0 so that ÈÈ fn - fm ÈÈ2 < ¶ whenever m, n ³ n0. Then, for any N and

any n ³ n0,

Ú
k=1

N  f HkL - fnHkL¤2 = lim
m®¥

Ú
k=1

N  fmHkL - fnHkL¤2 £ ¶
2
.

Since this holds for any N, we have ÈÈ f - fn ÈÈ2 £ ¶ for all n ³ n0. That is, fn ® f  in {2.   à

Example: 

a) Just having a candidate for a limit is not enough. Consider the sequence 8fn< in {¥

defined by fn = H1, …, 1, 0, …L, where the first n entries are 1 and the rest are 0. The

“obvious” limit is f = H1, 1, ...L (all 1), but ÈÈ f - fn ÈÈ¥ = 1 for all n. What’s wrong? 

b)  Worse still,  sometimes the “obvious” limit  is  not  even in the space. Consider the

same sequence as in a) and note that each fn is actually an element of c0. This time, the

natural candidate f  is not in c0. Again, what’s wrong?              Ù

As you can see, there can be a lot of details to check in a proof of completeness, and it

would be handy to have at least a few easy cases available. For example, when is a

subset of a complete space complete? The answer is given in the following theorem. 

• Theorem:

Let HM, dL be a complete metric space and let A be a subset of M. Then, HA, dL is com-

plete iff A is closed in M. 

Proof: 

(Þ)

First suppose that HA, dL is complete, and let 8xn< be a sequence in A that converges to

some point x Î M. Then 8xn< is Cauchy in HA, dL and so it converges to some point of A.

That is, we must have x Î A and, hence, A is closed. 

(Ü)

Next suppose that 8xn<  is a Cauchy sequence in HA, dL.  Then 8xn<  is also Cauchy in

HM, dL. Hence, we have that 8xn< converges to some point x Î M. But A is closed and so,

in fact, x Î A. Thus, HA, dL is complete.à

Example: 

a) @0, 1D, @0, ¥L, N, and D are all complete.

b) It follows from the theorem above that if a metric space HM, dL is both complete and

totally bounded, then every sequence in M has a convergent subsequence. In particular,

any closed, bounded subset of R is both complete and totally bounded. Thus, for exam-

ple, every sequence in @a, bD has a convergent subsequence. As you can easily imag-

ine, the interval @a, bD is a great place to do analysis! We will pursue the consequences

of this felicitous combination of properties when we explore compact sets.     Ù

Our next result underlines the fact that complete spaces have a lot in common with R. 

• Theorem:

For any metric space HM, dL, the following statements are equivalent: 

(i) HM, dL is complete.

(ii) (The Nested Set Theorem) Let F1 É F2 É ... be a decreasing sequence of nonempty

closed sets in M  with diamHFnL ® 0. Then, Ý
n=1

¥

Fn ¹ Æ  (in fact, it  contains exactly one

point). 

(iii) (The Bolzano-Weierstrass Theorem) Every infinite, totally bounded subset of M has

a limit point in M. 

Proof: 

(i)�(ii):

Given  8Fn<  as  in  (ii),  choose  xn Î Fn  for  each  n.  Then,  since  the  Fn  decrease,

8xk : k ³ n< Ì Fn  for each n,  and hence diam 8xk : k ³ n< ® 0 as n ® ¥.  That is,  8xn<  is

Cauchy. Since M  is complete, we have xn ® x for some x Î M. But the Fn  are closed,

and so we must have x Î Fn for all n. Thus, Ý
n=1

¥

Fn ¹ Æ.

(ii)�(iii): 

Let A  be an infinite, totally bounded subset of M.  Recall  that we have shown that A

contains a Cauchy sequence 8xn< comprised of distinct points. Hxn ¹ xm for n ¹ m). Now,

setting An = 8xk : k ³ n<,  we get A É A1 É A2 É ...,  each An  is  nonempty (even infinite),

and diamHAnL ® 0. That is, (ii) almost applies. But, clearly, An É An+1 ¹ Æ for each n, and

diam HAnL = diamHAnL ® 0 as n ® ¥. Thus there exists an x Î Ý
n=1

¥

An ¹ Æ. Now xn Î An

implies that dHxn, xL £ diamHAnL ® 0. That is, xn ® x and so x is a limit point of A. 

(iii)�(i): 

Let 8xn< be Cauchy in HM, dL. We just need to show that 8xn< has a convergent subse-

quence. Now, by a previous lemma, the set A = 8xn : n ³ 1< is totally bounded. If A hap-

pens to be finite, we are done (why?). Otherwise, (iii) tells us that A has a limit point

x Î M. It follows that some subsequence of 8xn< converges to x.   à

We are finally ready to study compact metric spaces.

             COMPACT METRIC SPACES

Definition: A metric space HM, dL is said to be compact if it is both complete and totally

bounded (as you might imagine, a compact space is the best of all possible worlds). 

Example: 

a) A subset K  of R is compact iff K  is closed and bounded. This fact is usually referred

to as the Heine–Borel  theorem. Hence, a closed bounded interval @a, bD  is  compact.

Also, the Cantor set D is compact. The interval H0, 1L, on the other hand, is not compact. 

b) A subset K of R
n
 is compact iff K is closed and bounded.

c)  It  is  important  that  we not  confuse the first  two examples with the general  case.

Recall  that  the  set  8en : n ³ 1<  is  closed and bounded in  {¥  but  not  totally  bounded

–hence not compact. Taking this a step further, notice that the closed ball 8x : ÈÈ x ÈÈ¥ £ 1<
in {¥ is not compact, whereas any closed ball in R

n
 is compact. 

d) A subset of a discrete space is compact iff it is finite (why?). Ù

Just as with completeness and total boundedness, we will want to give several equiva-

lent  characterizations  of  compactness.  In  particular,  since  neither  completeness  nor

total  boundedness is preserved by homeomorphisms, our newest definition does not

appear to be describing a topological property. Let’s remedy this immediately by giving a

sequential characterization of compactness that will turn out to be invariant under homeo-

morphisms:

• Theorem:

HM, dL is compact iff every sequence in M has a subsequence that converges to a point

in M. 

Proof: 

             

                               à

It  is  easy to believe that compactness is  a valuable property for  an analyst  to have

available. Convergent sequences are easy to come by in a compact space; no fussing

with  difficult  prerequisites  here!  If  you  happen  on  a  nonconvergent  sequence,  just

extract a subsequence that does converge and use that one instead. You couldn’t ask

for more! Given a compact space, it is easy to decide which of its subsets are compact: 

• Corollary:

Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M  is

compact and A is closed, then A is compact. 

Proof:

Suppose that A is compact, and let 8xn< be a sequence in A that converges to a point

x Î M. Then, from the above theorem, 8xn< has a subsequence that converges in A, and

hence we must have x Î A. Thus, A is closed. 

Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence

8xn< in A, the theorem above supplies a subsequence of 8xn< that converges to a point

x Î M. But since A is closed, we must have x Î A. Thus, A is compact.

à

To show that compactness is indeed a topological property, let’s show that the continu-

ous image of a compact set is again compact: 

• Theorem:

Let f : HM, dL ® HN, ΡL be continuous. If K is compact in M, then f HKL is compact in N.

Proof: 

Let 8yn< be a sequence in f HKL. Then, yn = f HxnL for some sequence 8xn< in K. But, since

K  is compact, 8xn< has a convergent subsequence, say, xnk
® x Î K. Then, since f  is

continuous, ynk
= f Hxnk

L ® f HxL Î f HKL. Thus, f HKL is compact. à

The theorem above gives us a wealth of useful information. In particular, it tells us that

real-valued continuous functions on compact spaces are quite well behaved:

• Corollary:

Let HM, dL be compact. If f : M �R is continuous, then f  is bounded. Moreover, f  attains

its maximum and minimum values.

Proof:

f HML is compact in R; hence it is closed and bounded. Moreover, sup f HML and inf f HML
are actually elements of f HML. That is, there exist x, y Î M such that f HxL £ f HtL £ f HyL for

all t Î M. ( In this case we would write f HxL = min
t Î M

f HtL and f HyL = max
t Î M

f HtL ).     à

• Corollary:

If f : @a, bD�R is continuous, then the range of f  is a compact interval @c, dD for some

c, d Î R. 

• Corollary:

If M  is a compact metric space, then ÈÈ f ÈÈ¥ = max
t Î M

 f HtL¤ defines a norm on CHML, the

vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of  “finite”. To better appreciate this, we will

need a slightly more esoteric characterization of compactness. A bit of preliminary detail-

checking will ease the transition. 

• Lemma:

In a metric space M, the following are equivalent: 

i) If G is any collection of open sets in M  with Ü8G : G Î G< É M, then there are finitely

many sets G1, ..., Gn Î G  with Ü
i=1

n

Gi É M. 

ii) If F is any collection of closed sets in M such that Ý
i=1

n

Fi ¹ Æ for all choices of finitely

many sets F1, ..., Fn Î F , then Ý8F : F Î F < ¹ Æ.

You should attempt to prove the above lemma yourself. As you might guess, De Mor-

gan’s laws do all of the work. The first condition is usually paraphrased by saying, in

less than perfect English, “every open cover has a finite subcover.” The second condi-

tion is abbreviated by saying “every collection of closed sets with the finite intersection

property has nonempty intersection.”  These may at  first  seem to be unwieldy state-

ments to work with, but each is worth the trouble. Here’s why we care: 

Å Condition i)  implies that M  is totally bounded because, for any ¶ > 0, the collection

G = 8B¶HxL : x Î M< is an open cover for M. 

Å Condition ii) implies that M  is complete because it easily implies the nested set theo-

rem (if F1 É F2 É ... are nonempty, then Ý
i=1

n

Fi = Fn ¹ Æ). 

Put these two conditions together and we’ve got our new characterization of compact-

ness:

• Theorem:

M is compact iff it satisfies either (hence both) conditions i) and ii) in the above lemma. 

Proof: 

(Ü)

As noted above,  conditions i)  and ii)  imply  that  M  is  totally  bounded and complete,

hence compact. 

(Þ)

We need to show that compactness will imply, say, i). To this end, suppose that M  is

compact, and suppose that G is an open cover for M that admits no finite subcover. We

will work toward a contradiction: 

Now M is totally bounded, so M can be covered by finitely many closed sets of diameter

at most 1. It follows that at least one of these, call it A1, cannot be covered by finitely

many sets from G. Certainly A1 ¹ Ø (since the empty set is easy to cover!). Note that A1

must be infinite.  

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diame-

ter at most 1 � 2. At least one of these, call it A2, cannot be covered by finitely many sets

from G. Continuing, we get a decreasing sequence A1 É A2 É ... É An É ..., where An  is

closed,  nonempty (infinite,  actually),  has diamHAn £ 1 � nL,  and cannot  be covered by

finitely many sets from G.

Now here’s the fly in the ointment! Let x Î Ý
n=1

¥

An ( ¹ Æ because M  is complete). Then,

x Î G Î G for some G (since G is an open cover) and so, since G is open, x Î B¶HxL Ì G

for some ¶ > 0 . But for any n with 1 � n < ¶ we would then have x Î An Ì B¶HxL Ì G. That

is, An  is covered by a single set from G. This is the contradiction that we were looking

for. (ÞÜ)   à

 Just look at the tidy form that the nested set theorem takes on in a compact space: 

 

• Corollary:

M  is compact iff  every decreasing sequence of nonempty closed sets has nonempty

intersection; that is,  if  and only if,  whenever F1 É F2 É ...  is a sequence of nonempty

closed sets in M, we have Ý
n=1

¥

Fn ¹ Æ. 

 

Proof: 

(Þ)

The forward implication is clear from the above theorem. 

(Ü)

Suppose that  every  nested  sequence of  nonempty  closed sets  in  M  has  nonempty

intersection,  and  let  8xn<  be  a  sequence  in  M.  Then  there  is  some  point  x  in  the

nonempty set  Ý
n=1

¥ 8xk : k ³ n<  (why?).  It  follows that  some subsequence of  8xn<  must

converge to x.    à

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;

hence, Ý
n=1

¥

Fn may contain more than one point. 

• Corollary:

M is compact iff every countable open cover admits a finite subcover (why?).
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